Materi listrik Statis dan Dinamis



Listrik Statis dan Dinamis
Listrik Statis

Pendahuluan
Ilmu pengetahuan tentang listrik bermula dari pengamatan yang dilakukan oleh Thales dari Miletus pada tahun 600 SM, bahwa batu ambar yang digosok dengan kain berbulu dapat menarik potongan jerami yang ada didekatnya. Pengatahuan tentang magnetisme kembali kepada pengamatan bahwa batu-batuan yang terdapat secara alami (yakni, magnetik) akan menarik besi. Kedua ilmu pengetahuan ini berkembang agak terpisah sampai tahun 1820, ketika Hans Christian Oersted (1777 – 1851) mengamati hubungan antara keduanya, bahwa arus listrik di dalam sebuah kawat dapat mempengaruhi sebuah jarum kompas magnetik. Ilmu pengetahuan baru mengenai elektromagnetisme dikembangkan lebih jauh oleh banyak peneliti, dan salah seorang yang paling penting diantaranya adalah Michael Faraday (1791 – 1867). James Clerk Maxwell (1831 – 1879) merumuskan hukum-hukum elektromagnetisme di dalam bentuk yang kita kenal seperti sekarang. Dalam kehidupan sehari-hari terdapat beberapa contoh gejala listrik statik, misalnya :
• Sisir atau penggaris yang digosok-gosokkan pada rambut yang kering atau kain wol akan menarik potongan kertas kecil. Lihat gambar!


Listrik statis (listrik tidak mengalir) adalah listrik yang tidak mengalir dan perpindahan arusnya terbatas. Listrik statis atau elektrostatiska merupakan bagian dari ilmu listrik yang mempelajari sifat -sifat muatan listrik. Dari pelajaran listrik statis, kita dapat mengetahui bahwa elektron adalah muatan listrik negatif yang mudah berpindah melalui bahan konduktor serta sulit berpindah melalui bahan isolator. Namun demikian, pemanfaatan listrik lebih banyak berkaitan dengan muatan listrik yang bergerak (listrik dinamis), seperti pemanfaatan listrik dalam kehidupan seharai- hari, baik di rumah, di kantor, di perusahaan, maupun di industri kecil dan besar.


Listrik Dinamis
Pendahuluan
Perkembangan teknik kelistrikan sampai tahun 1800, terutama yang mencakup produksi muatan statis masih dihasilkan oleh alat- alat yang relatif besar sehingga kurang praktis dalam penggunaannya. Di alam sendiri terjadi pertunjukan kelistrikan yang sangat hebat, yaitu kilat. Kenyataan bahwa kilat adalah fenomena kelistrikan baru dipahami ketika pada tahun 1752, Franklin dengan eksperimen layangannya yang tekenal menunjukkan bahwa kilat merupakan percikan listrik raksasa. Akhirnya, pada tahun 1800, suatu peristiwa yang sangat penting secara praktis terjadi, yaitu ketika Alessandro Volta membuat batrai listrik yang dapat menghasilkan aliran muatan listrik tetap (arus listrik). Penemuan ini membuka era baru yang mengubah peradaban kita karena teknologi saat ini bertumpu pada arus listrik.


Listrik dinamis (listrik mengalir) adalah listrik yang mengalir. Sumber arus listrik yang dapat menghasilkan beda potensial yang dapat menyebabkan listrik dapat mengalir


Perbedaan Listrik Statis dan Dinamis
Beberapa hal yang membedakan fenomena listrik dinamis dan listrik statis dapat kita rangkum sebagai berikut.
Pertama, aliran (perpindahan) elektron secara kontinyu pada listrik dinamis tidak terjadi pada listrik statis. Hal ini terjadi karena elektron- elektron pada konduktor (yang menjadi penghantar) memang sangat mudah berpindah. Sedangkan perpindahan elektron pada listrik statis terjadi karena gesekan atau gosokan (pada beberapa kasus juga karena induksi) serta tidak mengalir kontinyu.
Kedua, listrik dinamis hanya terjadi dengan penghantar konduktor. Sementara isolator berfungsi untuk mencegah manusia tersengat listrik dinamisnya.
Ketiga, listrik dinamis terdiri atas arus searah dan bolak balik.
Keempat, parameter parameter listrik dinamis dapat diukur dengan alat ukur yang baku. Sementara pada listrik statis susah diukur, misalnya sulit mengukur arus, tegangan, hambatan, dan daya listrik pada penggaris plastik yang menarik serpihan kertas.


 ENERGI LISTRIK
Masih ingatkah dengan hukum kekekalan energi? Ya, energi tidak dapat diciptakan dan dimusnahkan. Energi hanya berpindah dari satu bentuk ke bentuk yang lain. Energi berguna ketika terjadi perubahan bentuk. Di antara berbagai bentuk energi yang banyak digunakan adalah energi listrik. Agar energi listrik itu bermanfaat, maka harus dirubah menjadi menjadi bentuk energi yang lain.

Berbagai bentuk perubahan energi
Lampu neon dua stick

Kipas Angin

Solder Listrik

Penyepuhan logam

1. Energi listrik menjadi energi cahaya
Contohnya pada lampu
2. Energi listrik menjadi energi gerak
Contohnya pada kipas angin
3. Energi listrik menjadi energi panas
Contohnya pada setrika listrik dan solder.
4. Energi listrik menjadi energi kimia
Misalnya pada peristiwa pengisian aki atau penyepuhan.
Ada dua jenis lampu yang biasa digunakan, yaitu lampu pijar dan lampu neon

Perbedaan lampu pijar dengan lampu TL
1. Lampu pijar memiliki filames sedangkan lampu TL tidak
Filamen ini terbuat dari kawat tungsten tipis yang digulung menjadi spiral rangkap. Filamen inilah yang menyebabkan lampu lampu pijar memancarkan cahaya sekaligus panas.
2. Lampu TL memiliki efisiensi tinggi dibanding lampu pijar dalam mengubah energi listrik menjadi energi panas
3. Lampu TL mempunyai waktu hidup yang lebih lama dibanding dengan lampu pijar
4. Harga lampu pijar lebih murah
Meskipun demikian, dengan panas yang dihasilkan, lampu pijar banyak digunakan pada peternakan ayam sebagai penghangat ruangan.

Persamaan untuk Menghitung Energi Listrik

W = V.I.T = I.R.I.T = V2/R. t

W = energi listrik (J)­
V = tegangan (V)
I = kuat arus listrik (A)
t = waktu (s)
R = hambatan (ohm atau W)

Contoh Soal
1. Sebuah solder listrik yang bertegangan 110 volt dilalui arus 2 ampere. Berapa energi kalor yang dihasilkan setelah solder dialiri arus selama 20 menit?
Penyelesaian
Diketahui :
V = 110 volt
I = 2 ampere
t = 20 menit = 1200 s
Ditanya : W ?
Jawab :
W = V I t = 110 . 2 . 1200 = 264.000 J = 264 kJ

2. Sebuah lampu pijar yang memiliki hambatan 6 ohm dialiri arus sebesar 1,5 ampere selama 5 menit. Berapa energi listrik yang dihasilkan?
Penyelesaian
Diketahui :
R = 6 Ω
I = 1,5 A
t = 5 menit = 300 s
Ditanya : W ?
Jawab :
W = I2 R t = 1,52 . 6 . 300 = 4.050 J = 4,05 kJ
http://bimoyusufkurniawan.blogspot.co.id/

HUKUM TERMODINAMIKA,KAPASITAS PANAS GAS IDEAL DAN PROSES TERMODINAMIKA

HUKUM TERMODINAMIKA

Apakah termodinamika itu? Termodinamika adalah suatu cabang dari ilmu fisika yang mempelajari hubungan antara usaha (energi) dan panas (kalor). Sedangkan menurut bahasa, termodinamika adalah perubahan panas, berasal dari bahasa yunani, thermos = panas dan dynamic = perubahan. Termodinamika ditemukan seiring ditemukannya mesin uap praktis pada dekade 1800-an oleh James Watt.

Terdapat empat Hukum Dasar yang berlaku di dalam sistem termodinamika, yaitu:

A. Hukum Awal (Zeroth Law/Hukum ke-0)
Bunyi Hukum Termodinamika 0 : "Jika dua sistem berada dalam kesetimbangan termal dengan sistem ketiga, maka mereka berada dalam kesetimbangan termal satu sama lain"

B. Hukum Pertama
1. Bunyi Hukum Termodinamika 1 : "Energi tidak dapat diciptakan ataupun dimusnahkan, melainkan hanya bisa diubah bentuknya saja."
2. Rumus/Persamaan 1 Termodinamika:
Q = W + ∆U


Q = kalor/panas yang diterima/dilepas (J)
W =  energi/usaha (J)
∆U = perubahan energi (J)

3. Hukum 1 Termodinamika dibagi menjadi empat proses, yaitu
a. Proses Isobarik (tekanan tetap)
Proses isobarik adalah proses perubahan gas dengan tahanan tetap. Pada garis P – V proses isobarik dapat digambarkan seperti pada berikut.
Proses isobarik
Usaha proses isobarik dapat ditentukan dari luas kurva di bawah gra fik P – V.

b. Proses Isotermis (suhu tetap)
Proses isotermis adalah proses perubahan gas dengan suhu tetap. Perhatikan gra fikk pada Gambar berikut.
Proses isotermis
Pada proses ini berlaku hukum Boyle.


Karena suhunya tetap maka pada proses isotermis ini tidak terjadi perubahan energi dalam 
∆U=O . Sedang usahanya dapat dihitung dari luas daerah di bawah kurva, besarnya seperti berikut.

c. Proses Isokhoris (volume tetap)Proses isokhoris adalah proses perubahan gas dengan volume tetap. Pada grafik P.V dapat digambarkan seperti pada Gambar berikut.
Proses isokhoris
Karena volumenya tetap berarti usaha pada gas ini nol,


d. Proses Adiabatis (kalor tetap)
Pada proses isotermis sudah kita ketahui, U = 0 dan pada proses isokoris, W = 0. Bagaiaman jika terjadi proses termodinamika tetapi Q = 0 ?
Proses adiabatis
Proses yang inilah yang dinamakan proses adiabatis. Berdasarkan hukum I Termodinamika maka proses adiabatis memiliki sifat dibawah.




e. Proses Gabungan
Proses-proses selain 4 proses ideal diatas dapat terjadi. Untuk memudahkan penyelesaian dapat digambarkan grafik  P – V prosesnya. Dari grafik tersebut dapat ditentukan usaha proses sama dengan luas kurva dan perubahan energi dalamnya
Sedangkan gabungan proses adalah gabungan dua proses adiabatis yang berkelanjutan. Pada gabungan proses ini berlaku hukum I termodinamika secara menyeluruh.
Proses Gabungan

C. Hukum Kedua

Bunyi Hukum Termodinamika 2 : "Kalor mengalir secara spontan dari benda bersuhu tinggi ke benda bersuhu rendah dan tidak mengalir secara spontan dalam arah kebalikannya."

D. Hukum Ketiga
Bunyi Hukum Termodinamika 3 :
"Suatu sistem yang mencapai temperatur nol absolut, semua prosesnya akan berhenti dan entropi sistem akan mendekati nilai minimum."
"Entropi benda berstruktur kristal sempurna pada temperatur nol absolut bernilai nol."
KAPASITAS GAS IDEAL
Kapasitas Kalor Gas
Pengertian Kapasitas Kalor Gas
Kapasitas kalor C suatu zat menyatakan "banyaknya kalor Q yang diperlukan untuk menaikkan suhu zat sebesar 1 kelvin". Pernyataan ini dapat dituliskan secara matematis sebagai
C = Q/ΔT atau Q = CΔT\
keterangan:
C= Kapasitas Kalor
Q = Qalor
∆T = Kenaikan Suhu
Kapasitas gas kalor adalah kalor yang diberikan kepada gas untuk menaikan suhunya dapat dilakukan pada tekanan tetap (proses isobarik) atau volum tetap (proses isokhorik). Karena itu, ada dua jenis kapasitas gas kalor yaitu:
       1. Kapasitas kalor gas pada tekanan tetap
       2. Kapasitas kalor pada volum tetap.

Uraikan Konsep Kapasitas kalor Gas
Kapasitas kalor gas diperoleh dari fungsi empirik temperatur, dan biasanya dalam bentuk yang sama. Kapasitas kalor gas sangat dipengaruhi oleh tekanan, namun pengaruh tekanan pada sifat termodinamika tidak digunakan dalam. Karena gas pada tekanan rendah biasanya mendekati ideal, kapasitas kalor gas ideal bisa digunakan untuk hampir semua perhitungan gas real pada tekanan atmosfir.
1. kapasitas kalor gas pada tekanan tetap (Cp)
Kapasitas kalor gas adalah kalor yang diperlukan untuk menaikan suhu suatu zat satu Kelvin pada tekanan tetap. tekanan system dijaga selalu konstan. Karena yang konstan adalah tekanan, maka perubahan energi dalam, kalor, dan kerja pada proses ini tidak ada yang bernilai nol.
Maka secara matematis :
Cp = Q/ΔT = ((5/2PΔV)/(ΔT)) = ((5/2nRΔV)/(ΔT)
Cp = 5/2nR
2. Kapasitas kalor gas pada volum tetap (Cv)
Kapasitas kalor pada volum tetap artinya kalor yang diperlukan untuk menaikan suhu suatu zat satu kelvin pada volum tetap. Artinya kalor yang diberikan dijaga selalu konstan.
 Karena volume system selalu konstan, maka system tidak bisa melakukan kerja pada lingkungan. Demikian juga sebaliknya, lingkungan tidak bisa melakukan kerja pada system. Jadi kalor yang ditambahkan pada system digunakan untuk menaikan energi dalam sistem.
Maka secara matematis :
Cv = Q/ΔT = (3/2nRΔT)/ΔT
Cv = 3/2nR
Berdasarkan persamaan di atas dapat diperoleh bahwa:
Cp – Cv = 5/2nR – 3/2nR
Cp – Cv = nR
Kapasitas yang diperoleh pada persamaan tersebut adalah untuk gas monoatomik. Sedangkan untuk gas diatomik dan poliatomik tergantung pada derajat kebebasan gas. Dapat digunakan pembagian suhu sebagai berikut:
Pada suhu rendah (± 250 K): Cv = 3/2nR dan Cp = 5/2nR
Pada suhu sedang (± 500 K): Cv = 5/2nR dan Cp = 7/2nR
Pada suhu tinggi (± 1000 K): Cv = 7/2nR dan Cp = 9/2nR
Oleh karena itu, konstanta Laplace γ dapat dihitung secara teoretis sesuai persamaan sebagai berikut:
A.Gas monoatomik: γ = Cp/Cv = ((5/2nR)/(3/2nR)) = 5/3 = 1,67
B.Gas diatomik pada suhu kamar: γ = Cp/Cv = ((7/2nR)/(5/2nR)) = 7/5 = 1,4
Dengan memasukan nilai Qp danQc sertqa W diperoleh :
p∆T – Cv∆T p∆V
(C p – Cv ) p∆V
p – Cvp∆V / ∆T
Akhirnya kita mendapatkan rumus lengkap usaha yang dilakukan oleh gas seperti dibawah ini :
           W = p∆V = p (V2- V1)
W = nR∆V = nR(T2- T1)
            W = Qp - Qv = (Cp – Cv)∆T
            Sumber :http://murninana.blogspot.com/2013/05/kapasitas-kalor-gas.html
PROSES TERMODINAMIKA
             Di dalam termodinamika dikenal ada 5 proses yaitu :
  1. Proses pada tekanan konstan (isobarik)
  2. Proses pada volume konstan (isokhorik)
  3. Proses pada temperatur konstan (isotermal)
  4. Proses adiabatis reversibel (isentropi)
  5. Proses polytropis.
Sebelum kita membahas tentang kondisi pada masing-masing proses terlebih dahulu kita ingat kembali beberapa persamaan – persamaan yang berlaku seperti :
Persamaan gas ideal :
gas idealPerubahan energi dalam :
energi dalamPerubahan entalpi :
entalpiIndek isentropis atau rasio panas jenis tekanan konstan terhadap panas jenis volume konstan :
k
1. Proses tekanan konstan (isobarik)
Pada proses tekanan konstan, tekanan awal proses sama dengan tekanan akhir proses atau p1= p2 . Bila p = C maka dp = 0. Pada diagram p-V dapat digambar sebagai berikut.
gbr 1
Kerja akibat ekspansi atau kompresi gas pada tekanan konstan dapat dihitung sebagai berikut :
1Perubahan energi dalam pada proses isobarik dapat dihitung :
2Perubahan kalor pada proses isobarik dapat dihitung :
3
Dari persamaan gas ideal didapat :
4dan
5
Sehingga :
6
Entalpi pada proses isobar :
72. Proses volume konstan (isokhorik)
Pada proses isokhorik, volume awal akan sama dengan volume akhir gas atau V1 = V2. Bila V1 = V2 maka dV = 0.
Pada diagram p-V dapat digambar sebagai breikut :
gbr 2
Pada proses isokhorik atau volume konstan, tidak ada kerja yang diberikan atau dihasilkan sistem, karena volume awal dan akhir proses sama sehingga perubahan volume (dV) adalah 0. Pada proses isokhorik semua kalor yang diberikan diubah menjadi energi dalam sistem.
8Perubahan energi dalam pada proses isokhorik :
9Kalor pada proses isokhorik :
10Dimana dV = 0 sehingga dQ = dU = m.cv.(T2 – T1)
Entalpi pada proses isokhorik :
11
 3. Proses temperatur konstan (isotermal)
Pada proses isotermal, temperatur awal proses akan sama dengan temperatur akhir proses atau T1 = T2 . kondisi ini menyebabkan dT = 0 sehingga perubahan energi dalam sistem (dU) = 0.
gbr3
Kerja pada proses isotermal dapat dihitung :
12
Dari hukum gas ideal :
gas idealKarena T = konstan maka p.V = konstan (C). sehingga 13maka
14
m, R dan T konstan maka :
15
Didapat:
16
Perubahan energi dalam pada proses isotermal adalah 0 sehingga besar perubahan kalor akan sama dengan kerja pada proses isotermal.
17
Perubahan entalpi pada proses isotermal :
18
4. Proses Isentropis (adiabatis reversibel)
Proses adiabatis reversibel adalah proses termodinamika dimana tidak ada kalor yang masuk atau keluar dari sistem (adiabatis) dan proses ini mampu balik (reversibel) artinya tidak ada hambatan atau gesekan. Pada kenyataannya proses ini tidak ada di alam, tetapi penyederhaan yang demikian dapat mempermudah untuk menganalisa sistem. Pada p-V diagram dapat digambarkan sebagai berikut.
gbr4
Karena tidak ada kalor yang dapat masuk dan keluar dari sistem, maka tidak ada perubahan kalor atau dQ = 0. Sehingga kerja yang diberikan atau dilakukan oleh sistem akan mengubah energi dalam sistem. Proses ini berlangsung pada kondisi p.Vk = konstan. Dimana k adalah rasio panas jenis pada tekanan konstan dengan panas jenis pada volume konstan atau sering disebut juga sebagai index isentropis. Kerja pada proses adiabatis reversibel dapat dihitung sebagai berikut :
12
Karena proses berlangsung pada kondisi p.Vk = C , maka:
p1sehingga :
p2

Perubahan energi dalam sistem adiabatis reversibel :
p3
Tidak ada kalor yang masuk atau keluar sistem sehingga :
p4

Entalpi pada proses adiabatis reversibel :
Entalpi proses adiabatis reversibel  adalah massa dikali panas jenis tekanan konstan dan dikali dengan delta temperatur. Dari mana asalnya coba turunin sendiri. Petunjuk dQ = 0 untuk proses ini.

5. Proses polytropis
Proses polytropis adalah proses termodinamika dengan index isentropis k = n dimana n > 1 atau p.Vn = C. Proses ini sama dengan proses adiabatis reversibel hanya dibedakan jika pada proses adiabatis, kalor tidak dapat keluar atau masuk ke sistem, tetapi pada proses ini kalor dapat berubah (dapat keluar – masuk sistem). p – V diagram untuk proses politropis sama dengan p-V diagram proses adiabatis.
Kerja pada proses politropis adalah sama dengan kerja pada proses adiabatis reversibel, hanya k diganti dengan n dimana n > 1.
12Karena proses berlangsung pada kondisi p.Vn = C , maka
poli1sehingga :
poli2

Perubahan energi dalam sistem politropis :
poli3
Perubahan kalor dalam sistem politropis :
poli4

Bila n pada proses politropis sama dengan 1 maka proses akan berjalan mengikuti proses isotermal, sedangkan bila besar harga n = k, maka proses akan berjalan berdasarkan proses adiabatis reversibel dan bila n sama dengan 0, maka harga vn akan sama dengan 1 sehingga proses akan mengikuti proses tekanan konstan.
NB: Jika gambar tidak keluar klik pada gambar !
SUMBER: https://djukarna.wordpress.com/2014/05/07/proses-proses-termodinamika/



Contoh soal beserta jawaban listrik dinamis

Pernyataan berikut yang tidak tepat adalah .... a. kuat arus listrik berbanding terbalik dengan waktu b. muatan listrik berbanding terbali...